Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Chem ; 12: 1372378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645776

RESUMO

Theophylline, a nitrogen-containing heterocycle, serves as a promising focal point for medicinal researchers aiming to create derivatives with diverse pharmacological applications. In this work, we present an improved synthetic method for a range of theophylline-1,2,4-triazole-S-linked N-phenyl acetamides (4a‒g) utilizing ultrasound-assisted synthetic approach. The objective was to assess the effectiveness of synthesized theophylline-1,2,4-triazoles (4a‒g) as inhibitors of HCV serine protease and as antibacterial agents against B. subtilis QB-928 and E. coli AB-274. Theophylline-1,2,4-triazoles were obtained in good to excellent yields (69%-95%) in a shorter time than conventional approach. 4-Chlorophenyl moiety containing theophylline-1,2,4-triazole 4c displayed significantly higher inhibitory activity against HCV serine protease enzyme (IC50 = 0.015 ± 0.25 mg) in comparison to ribavirin (IC50 = 0.165 ± 0.053 mg), but showed excellent binding affinity (-7.55 kcal/mol) with the active site of serine protease, better than compound 4c (-6.90 kcal/mol) as well as indole-based control compound 5 (-7.42 kcal/mol). In terms of percentage inhibition of serine protease, 2-chlorophenyl compound 4b showed the maximum percentage inhibition (86%), more than that of the 3,4-dichlorophenyl compound 4c (76%) and ribavirin (81%). 3,4-Dimethylphenyl-based theophylline-1,2,4-triazole 4g showed the lowest minimum inhibitory concentration (MIC = 0.28 ± 0.50 µg/mL) against the B. subtilis bacterial strain as compared to the standard drug penicillin (MIC = 1 ± 1.50 µg/mL). The other 4-methylphenyl theophylline-1,2,4-triazole 4e (MIC = 0.20 ± 0.08 µg/mL) displayed the most potent antibacterial potential against E. coli in comparison to the standard drug penicillin (MIC = 2.4 ± 1.00 µg/mL). Molecular docking studies further helped in an extensive understanding of all of the interactions between compounds and the enzyme active site, and DFT studies were also employed to gain insights into the molecular structure of the synthesized compounds. The results indicated that theophylline-linked triazole derivatives 4b and 4c showed promise as leading contenders in the fight against the HCV virus. Moreover, compounds 4e and 4g demonstrated potential as effective chemotherapeutic agents against E. coli and B. subtilis, respectively. To substantiate these findings, additional in vivo studies and clinical trials are imperative, laying the groundwork for their integration into future drug design and development.

2.
Biomedicines ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002078

RESUMO

Molecular hybridization has emerged as the prime and most significant approach for the development of novel anticancer chemotherapeutic agents for combating cancer. In this pursuit, a novel series of indole-1,2,4-triazol-based N-phenyl acetamide structural motifs 8a-f were synthesized and screened against the in vitro hepatocellular cancer Hep-G2 cell line. The MTT assay was applied to determine the anti-proliferative potential of novel indole-triazole compounds 8a-f, which displayed cytotoxicity potential as cell viabilities at 100 µg/mL concentration, by using ellipticine and doxorubicin as standard reference drugs. The remarkable prominent bioactive structural hybrids 8a, 8c, and 8f demonstrated good-to-excellent anti-Hep-G2 cancer chemotherapeutic potential, with a cell viability of (11.72 ± 0.53), (18.92 ± 1.48), and (12.93 ± 0.55), respectively. The excellent cytotoxicity efficacy against the liver cancer cell line Hep-G2 was displayed by the 3,4-dichloro moiety containing indole-triazole scaffold 8b, which had the lowest cell viability (10.99 ± 0.59) compared with the standard drug ellipticine (cell viability = 11.5 ± 0.55) but displayed comparable potency in comparison with the standard drug doxorubicin (cell viability = 10.8 ± 0.41). The structure-activity relationship (SAR) of indole-triazoles 8a-f revealed that the 3,4-dichlorophenyl-based indole-triazole structural hybrid 8b displayed excellent anti-Hep-G2 cancer chemotherapeutic efficacy. The in silico approaches such as molecular docking scores, molecular dynamic simulation stability data, DFT, ADMET studies, and in vitro pharmacological profile clearly indicated that indole-triazole scaffold 8b could be the lead anti-Hep-G2 liver cancer therapeutic agent and a promising anti-Hep-G2 drug candidate for further clinical evaluations.

3.
Biomedicines ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002085

RESUMO

Benzofuran, 1,3,4-oxadiazole, and 1,2,4-triazole are privileged heterocyclic moieties that display the most promising and wide spectrum of biological activities against a wide variety of diseases. In the current study, benzofuran-1,3,4-oxadiazole BF1-BF7 and benzofuran-1,2,4-triazole compounds BF8-BF15 were tested against HCV NS5B RNA-dependent RNA polymerase (RdRp) utilizing structure-based screening via a computer-aided drug design (CADD) approach. A molecular docking approach was applied to evaluate the binding potential of benzofuran-appended 1,3,4-oxadiazole and 1,2,4-triazole BF1-BF15 molecules. Benzofuran-1,3,4-oxadiazole scaffolds BF1-BF7 showed lesser binding affinities (-12.63 to -14.04 Kcal/mol) than benzofuran-1,2,4-triazole scaffolds BF8-BF15 (-14.11 to -16.09 Kcal/mol) against the HCV NS5B enzyme. Molecular docking studies revealed the excellent binding affinity scores exhibited by benzofuran-1,2,4-triazole structural motifs BF-9 (-16.09 Kcal/mol), BF-12 (-15.75 Kcal/mol), and BF-13 (-15.82 Kcal/mol), respectively, which were comparatively better than benzofuran-based HCV NS5B inhibitors' standard reference drug Nesbuvir (-15.42 Kcal/mol). A molecular dynamics simulation assay was also conducted to obtain valuable insights about the enzyme-compounds interaction profile and structural stability, which indicated the strong intermolecular energies of the BF-9+NS5B complex and the BF-12+NS5B complex as per the MM-PBSA method, while the BF-12+NS5B complex was the most stable system as per the MM-GBSA calculation. The drug-likeness and ADMET studies of all the benzofuran-1,2,4-triazole derivatives BF8-BF15 revealed that these compounds possessed good medicinal chemistry profiles in agreement with all the evaluated parameters for being drugs. The molecular docking affinity scores, MM-PBSA/MM-GBSA and MD-simulation stability analysis, drug-likeness profiling, and ADMET study assessment indicated that N-4-fluorophenyl-S-linked benzofuran-1,2,4-triazole BF-12 could be a future promising anti-HCV NS5B RdRp inhibitor therapeutic drug candidate that has a structural agreement with the Nesbuvir standard reference drug.

4.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787572

RESUMO

Cancer is a global public health problem that affects millions each year. Novel anticancer drug candidates are in need to treat various cancers and to overcome the resistance that exists against drugs in use. Benzimidazole derivatives have been reported as anticancer agents. These lead us to synthesize similar benzimidazole derivatives and investigate their anticancer activity. In this study, six new 1,3-dihydro-2H-benzimidazol-2-one-based molecules (2a-f) were synthesized. The structures of these molecules were verified by spectroscopic methods. The antiproliferative activities of molecules 2a-f were screened against a panel of human cancer cell lines, including the liver, colon, lung, and breast. The molecules were also tested towards normal human lung cell line to determine their selectivity. The results demonstrated that compound 2d had the highest cytotoxic effect compared to compounds 2a-c, 2e, and 2f against DLD-1 and MDA-MB-231 cell lines. The binding potential of the relatively active compound, 2d, with three targets was investigated through molecular docking. The stability of target-compound complexes procured from the docking was explored through molecular dynamics (MD) simulation. The docking and MD simulation studies revealed that compound 2d had the highest potential to bind to GALR3 among the targets. Furthermore, the computational pharmacokinetic study demonstrated that the synthesized compounds had drug-like properties.Communicated by Ramaswamy H. Sarma.

5.
Cell Signal ; 109: 110745, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271348

RESUMO

Thyroid hormones (THs) play crucial roles in numerous physiological processes of nearly all mammalian tissues, including differentiation and metabolism. Deterioration of TH signaling has been associated with several pathologies, including cancer. The effect of highly active triiodothyronine (T3) has been investigated in many in vivo and in vitro cancer models. However, the role of T3 on cancerous prostate tissue is controversial today. Recent studies have focused on the characterization of the supportive roles of the endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) signaling in prostate cancer (PCa) and investigating new hormonal regulation patterns, including estrogen, progesterone and 1,25(OH)2D3. Additionally, androgenic signaling controlled by androgens, which are critical in PCa progression, has been shown to be regulated by other steroid hormones. Today, the effects of T3 on ERAD and UPR are unknown, the impact on androgenic signaling is also still not fully understood in PCa. Therefore, we aimed to investigate the molecular action of T3 on the ERAD mechanism and UPR signaling in PCa cells and also extensively examined the effect of T3 on androgenic signaling. Our data indicated that T3 tightly regulated ERAD and UPR signaling in androgen-dependent PCa cells. We also found that T3 hormone stimulated androgenic signaling by upregulating AR mRNA and protein levels and enhancing its nuclear translocation. Additionally, advanced computational studies supported the ligand binding effect of T3 on AR protein. Our data suggest that targeting thyroidal signaling should be considered in therapeutic approaches to be developed for prostate malignancy in addition to other steroidal regulations.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Animais , Humanos , Androgênios/farmacologia , Androgênios/metabolismo , Degradação Associada com o Retículo Endoplasmático , Tri-Iodotironina/farmacologia , Tri-Iodotironina/genética , Tri-Iodotironina/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Mamíferos/metabolismo
6.
Biotechnol Appl Biochem ; 70(5): 1707-1719, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37071114

RESUMO

Paraoxonase 1 (PON1) was purified 148.80-fold in 37.92% yield by hydrophobic interaction chromatography technique. The purity of PON1 was checked by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with a single band of 43 kDa. The in vitro effects of nine different calcium channel blockers on PON1 activity were evaluated. All drugs strongly decreased PON1 activity, and IC50 levels were between 13.987 ± 0.59 and 238.104 ± 2.14 µM, Ki values between 8.58 ± 0.36 and 111 ± 1.27 µM. The drugs with the strongest inhibitory effect were nisoldipine with 13.987 ± 0.59 µM and nicardipine with 20.158 ± 0.43 µM. The mechanism of action for the inhibition of the enzyme by nisoldipine and nicardipine was investigated through molecular docking. The stability of enzyme-ligand complexes obtained from the docking was explored through molecular dynamics simulation. The binding affinity of the ligands toward the enzyme was also investigated through MMPBSA (molecular mechanics Poisson-Boltzmann surface area method). The computational analysis demonstrated these compounds could inhibit the enzyme. Nisoldipine had the strongest binding, and its complex was the most stable one. Furthermore, nicardipine was found to have the highest affinity toward the enzyme.


Assuntos
Arildialquilfosfatase , Bloqueadores dos Canais de Cálcio , Humanos , Arildialquilfosfatase/química , Arildialquilfosfatase/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nicardipino , Nisoldipino
7.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769327

RESUMO

In this work, BTEAC (benzyl triethylammonium chloride) was employed as a phase transfer catalyst in an improved synthesis (up to 88% yield) of S-alkylated bromobenzofuran-oxadiazole scaffolds BF1-9. These bromobenzofuran-oxadiazole structural hybrids BF1-9 were evaluated in vitro against anti-hepatocellular cancer (HepG2) cell line as well as for their in silico therapeutic potential against six key cancer targets, such as EGFR, PI3K, mTOR, GSK-3ß, AKT, and Tubulin polymerization enzymes. Bromobenzofuran structural motifs BF-2, BF-5, and BF-6 displayed the best anti-cancer potential and with the least cell viabilities (12.72 ± 2.23%, 10.41 ± 0.66%, and 13.08 ± 1.08%), respectively, against HepG2 liver cancer cell line, and they also showed excellent molecular docking scores against EGFR, PI3K, mTOR, and Tubulin polymerization enzymes, which are major cancer targets. Bromobenzofuran-oxadiazoles BF-2, BF-5, and BF-6 displayed excellent binding affinities with the active sites of EGFR, PI3K, mTOR, and Tubulin polymerization enzymes in the molecular docking studies as well as in MMGBSA and MM-PBSA studies. The stable bindings of these structural hybrids BF-2, BF-5, and BF-6 with the enzyme targets EGFR and PI3K were further confirmed by molecular dynamic simulations. These investigations revealed that 2,5-dimethoxy-based bromobenzofuran-oxadiazole BF-5 (10.41 ± 0.66% cell viability) exhibited excellent cytotoxic therapeutic efficacy. Moreover, computational studies also suggested that the EGFR, PI3K, mTOR, and Tubulin polymerization enzymes were the probable targets of this BF-5 scaffold. In silico approaches, such as molecular docking, molecular dynamics simulations, and DFT studies, displayed excellent association with the experimental biological data of bromobenzofuran-oxadiazoles BF1-9. Thus, in silico and in vitro results anticipate that the synthesized bromobenzofuran-oxadiazole hybrid BF-5 possesses prominent anti-liver cancer inhibitory effects and can be used as lead for further investigation for anti-HepG2 liver cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Catálise , Proliferação de Células , Receptores ErbB/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis/química , Fosfatidilinositol 3-Quinases/metabolismo , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Tubulina (Proteína)/metabolismo , Ultrassom , Humanos , Linhagem Celular Tumoral
8.
J Cell Commun Signal ; 17(3): 793-811, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36696010

RESUMO

The tumorigenic properties of prostate cancer are regulated by advanced hormonal regulation-mediated complex molecular signals. Therefore, characterizing the regulation of these signal transduction systems is crucial for understanding prostate cancer biology. Recent studies have shown that endoplasmic reticulum (ER)-localized protein quality control mechanisms, including ER-associated degradation (ERAD) and unfolded protein response (UPR) signaling contribute to prostate carcinogenesis and to the development of drug resistance. It has also been determined that these systems are tightly regulated by androgens. However, the role of estrogenic signaling in prostate cancer and its effects on protein quality control mechanisms is not fully understood. Herein, we investigated the regulatory effects of estrogens on ERAD and UPR and their impacts on prostate carcinogenesis. We found that estrogens strongly regulated the ERAD components and IRE1⍺ branch of UPR by Er⍺/ß/AR axis. Besides, estrogenic signaling rigorously regulated the tumorigenicity of prostate cancer cells by promoting c-Myc expression and epithelial-mesenchymal transition (EMT). Moreover, estrogenic signal blockage significantly decreased the tumorigenic features of prostate cancer cells. Additionally, simultaneous inhibition of androgenic/estrogenic signals more efficiently inhibited tumorigenicity of prostate cancer cells, including proliferation, migration, invasion and colonial growth. Furthermore, computational-based molecular docking, molecular dynamics simulations and MMPBSA calculations supported the estrogenic stimulation of AR. Present findings suggested that ERAD components and IRE1⍺ signaling are tightly regulated by estrogen-stimulated AR and Er⍺/ß. Our data suggest that treatment approaches targeting the co-inhibition of androgenic/estrogenic signals may pave the way for new treatment approaches to be developed for prostate cancer. The present model of the impact of estrogens on ERAD and UPR signaling in androgen-sensitive prostate cancer cells.

9.
J Biomol Struct Dyn ; 41(22): 12951-12965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36709442

RESUMO

Nowadays, different vaccines and antiviral drugs have been developed and their effectiveness has been proven against SARS-CoV-2. Pyrazoline derivatives are biologically active molecules and exhibit broad-spectrum biological activity properties. In this scope, four new molecules (4a-d) including a pyrazoline core were synthesized in order to predict their antiviral properties theoretically. Compounds 4a-d were purified by the crystallization method. The structures of 4a-d were completely characterized by NMR, IR, and elemental analysis. The molecular structures of the compounds in the ground state have been optimized using density functional theory with the B3LYP/6-31++G(d,p) level. The quantum chemical parameters were predicted by density functional theory calculations. Moreover, the molecular docking studies of 4a-d with SARS-CoV-2 Spike protein (Wuhan) and omicron S protein (variant) were presented to investigate and predict potential interactions. The binding sites, binding types and energies, bond distances of the non-covalent interactions and calculated inhibition constants (calc. Ki) as a consequence of molecular docking for 4a-d were presented in this study. Furthermore, the stability of the protein-4a complex obtained from the docking was investigated through molecular dynamics simulation.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Compostos Heterocíclicos , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Simulação de Dinâmica Molecular
10.
J Biomol Struct Dyn ; 41(14): 6695-6708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35968554

RESUMO

Since Schiff base derivatives have a wide range of biological activities, novel Schiff base derivatives were designed and synthesized in satisfactory yields. 1H NMR, 13C NMR, IR, mass and elemental analysis were used to provide a complete structural characterization of the new synthesized Schiff bases (3-6). The antiproliferative activity properties of compounds were tested against two human cancer cell lines including breast (MDA-MB-231) and colon (DLD-1). The compounds overall did not show high cytotoxic activity against both cancer cell lines compared to the positive control drug cisplatin. The synthesized Schiff base compounds were further screened for their in vitro antimicrobial activities against five bacterial strains (Escherichia coli (ATTC 25922), Salmonella thyphimurium (ATTC 14028), Staphylococcus aureus (ATCC 25923), Bacillus subtilis (ATCC 6633), Bacillus cereus (ATCC 11778)) and two fungal strains (Candida albicans (ATCC 10231) and Candida glabrata (ATCC 90030)) using broth micro dilution techniques. The mode of action for the antimicrobial effect in the experimental part was explored through molecular docking. The stability of target-ligand complexes obtained from the docking were assessed through molecular dynamics simulation. The binding affinity of the compounds toward the target protein were also investigated using MMPBSA. Furthermore, electrochemical properties of some compounds was analyzed by DFT calculations. By using POM theory, it becomes more easy to control the bioactivity of drugs. Here, how the physicochemical properties play a crucial role in the orientation of their bioactivity was demonstrated.Communicated by Ramaswamy H. Sarma.

11.
Cell Signal ; 103: 110577, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36567009

RESUMO

Steroid hormone signaling is critical in the tumor progression and the regulation of physiological mechanisms such as endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) in prostate cancer. 1,25(OH)2 D3 is an active metabolite of vitamin D classified as a steroid hormone. It exhibits anti-tumor effects, including angiogenesis and suppression of cell cycle progression. Moreover, progressively reducing expression levels of vitamin D receptor (VDR) are observed in many cancer types, including the prostate. In the present study, we investigated the molecular action of 1,25(OH)2 D3 on ERAD, UPR and androgenic signaling. We found that 1,25(OH)2 D3 negatively regulated the expression level of ERAD components and divergently controlled the inositol-requiring enzyme 1⍺ (IRE1⍺) and protein kinase RNA-like ER kinase (PERK) branches of UPR in LNCaP human prostate cancer cells. Also, similar results were obtained with another human prostate cancer cell line, 22Rv1. More strikingly, we found that androgenic signaling is negatively regulated by VDR signaling. Also, molecular docking supported the inhibitory effect of 1,25(OH)2 D3 on AR signaling. Moreover, we found VDR signaling suppressed tumor progression by decreasing c-Myc expression and reducing the epithelial-mesenchymal transition (EMT). Additionally, 1,25(OH)2 D3 treatment significantly inhibited the 3D-tumor formation of LNCaP cells. Our results suggest that further molecular characterization of the action of VDR signaling in other cancer types such as estrogenic signal in breast cancer will provide important contributions to a better understanding of the roles of steroid hormone receptors in carcinogenesis processes.


Assuntos
Neoplasias da Próstata , Receptores de Calcitriol , Humanos , Masculino , Androgênios , Calcitriol/farmacologia , Degradação Associada com o Retículo Endoplasmático , Simulação de Acoplamento Molecular , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Esteroides , Vitamina D/farmacologia
12.
Mol Divers ; 26(5): 2863-2876, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35780204

RESUMO

Selectively inhibiting butyrylcholinesterase (BChE) is hypothesized to help in the management of Alzheimer's disease (AD). Several studies have determined a correlation between the increased activity of BChE and the onset of AD. An advantage of BChE over acetylcholinesterase inhibition is that absence of BChE activity does not lead to obvious physiological disturbance. However, currently no BChE inhibitors are available commercially as potential therapeutics for AD. In our continuous effort to find potent BChE inhibitors for Alzheimer's disease, a total of 22 novel benzimidazoles with diversified substitutions were synthesized and evaluated for their anticholinesterase activities in this study. Among the synthesized compounds, 2j and 3f were found to exhibit potent and selective BChE inhibition with IC50 values of 1.13 and 1.46 µM, respectively. Molecular docking studies were carried out to rationalize the observed inhibitory activities. The compounds were predicted to have high penetration across the blood-brain barrier. Moreover, cell proliferative studies were also performed to evaluate the toxicity profile of the interested compounds. Compound 3f was found to be a potent and selective butyrylcholinesterase inhibitor with an IC50 value of 1.46 µM.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Benzimidazóis/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Hidrazinas , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
13.
Nanotechnology ; 33(26)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35325883

RESUMO

Accurate diagnosis of cancer cells in early stages plays an important role in reliable therapeutic strategies. In this study, we aimed to develop fluorescence-conjugated polymer carrying nanocapsules (NCs) which is highly selective for myeloma cancer cells. To gain specific targeting properties, NCs, XT5 molecules (a benzamide derivative) which shows high affinity properties against protease-activated receptor-1 (PAR1), that overexpressed in myeloma cancer cells, was used. For this purpose, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000]-carboxylic acid (DSPE-PEG2000-COOH) molecules, as a main encapsulation material, was conjugated to XT5 molecules due to esterification reaction using N,N'-dicyclohexylcarbodiimide as a coupling agent. The synthesized DSPE-PEG2000-COO-XT5 was characterized by using FT-IR and1H NMR spectroscopies and results indicated that XT5 molecules were successfully conjugated to DSPE-PEG2000-COOH. Poly(fluorene-alt-benzothiadiazole) (PFBT) conjugated polymer (CP) was encapsulated with DSPE-PEG2000-COO-XT5 due to dissolving in tetrahydrofuran and ultra-sonication in an aqueous solution, respectively. The morphological properties, UV-vis absorbance, and emission properties of obtainedCPencapsulatedDSPE-PEG2000-COO-XT5(CPDP-XT5) NCs was determined by utilizing scanning electron microscopy, UV-vis spectroscopy, and fluorescent spectroscopy, respectively. Cytotoxicity properties of CPDP-XT5 was evaluated by performing MTT assay on RPMI 8226 myeloma cell lines. Cell viability results confirmed that XT5 molecules were successfully conjugated to DSPE-PEG2000-COOH. Specific targeting properties of CPDP-XT5 NCs and XT5-free NCs (CPDP NCs) were investigated on RPMI 8226 myeloma cell lines by utilizing fluorescent microscopy and results indicated that CPDP-XT5 NCs shows significantly high affinity in comparison to CPDP NCs against the cells. Homology modeling and molecular docking properties of XT5 molecules were evaluated and simulation results confirmed our results.


Assuntos
Mieloma Múltiplo , Nanocápsulas , Cápsulas , Humanos , Micelas , Simulação de Acoplamento Molecular , Mieloma Múltiplo/tratamento farmacológico , Polietilenoglicóis/química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Braz. arch. biol. technol ; 64: e21200782, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1350252

RESUMO

Abstract Essential oils (EO), as new bioactive compounds, have been used for pharmaceutical applications. In this study, EO of Niaouli was found to have a high content in 1,8-cineole (58.53%). Furthermore, pinene, α-terpineol, nerolidol and ledene were found to be its components with an abundance of above 2%. Niaouli EO also had effects as inhibitor of Pseudomonas aeruginosa PAO1 biofilm formation (p<0.05). In the molecular docking study, this effect was explored. The natural ligand OdDHL, the bound ligand TP-1 (Triphenyl-1), the major component 1,8-cineole and the other components with significant abundance were docked against the binding region of the LasR protein. The docking study exhibited that 1,8-cineole together with the other components investigated could inhibit LasR competitively. Its effect on cell viability was also analyzed by MTT assay. Although dose-dependent cell viability effect was observed for all hours (p<0.05), IC50 value was above 100 μg/mL. Therefore, Niaouli can be assessed safely for dermatological applications because of its low toxicity on fibroblast cells and may be considered as potential quorum sensing inhibitor because of its inhibition effect on biofilm formation.

15.
Comput Biol Chem ; 80: 270-277, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31054539

RESUMO

Panomycocin is a naturally produced potent antimycotic/antifungal protein secreted by the yeast Wickerhamomyces anomalus NCYC 434 with an exo-ß-1,3-glucanase activity. In this study the three dimensional structure of panomycocin was predicted and the computational site-directed mutagenesis was performed to enhance its thermal stability in liquid formulations over the body temperature for topical therapeutic applications. Homology modeling was performed with MODELLER and I-TASSER. Among the generated models, the model with the lowest energy and DOPE score was selected for further loop modeling. The loop model was optimized and the reliability of the model was confirmed with ERRAT, Verify 3D and Ramachandran plot values. Enhancement of the thermal stability of the model was done using contemporary servers and programs such as SPDBViewer, CNA, I-Mutant2.0, Eris, AUTO-MUTE and MUpro. In the region outside the binding site of the model Leu52 Arg, Phe223Arg and Gly254Arg were found to be the best thermostabilizing mutations with 6.26 K, 6.26 K and 8.27 K increases, respectively. In the binding site Glu186Arg was found to be the best thermostabilizer mutation with a 9.58 K temperature increase. The results obtained in this study led us to design a mutant panomycocin that can be used as a novel antimycotic/antifungal drug in a liquid formulation for topical applications over the normal body temperature.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Micotoxinas/química , Micotoxinas/genética , Pichia/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Mutação , Estabilidade Proteica , Estrutura Terciária de Proteína , Temperatura
16.
Chem Biol Drug Des ; 93(1): 12-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30187647

RESUMO

Homology modeling is one of the computational structure prediction methods that are used to determine protein 3D structure from its amino acid sequence. It is considered to be the most accurate of the computational structure prediction methods. It consists of multiple steps that are straightforward and easy to apply. There are many tools and servers that are used for homology modeling. There is no single modeling program or server which is superior in every aspect to others. Since the functionality of the model depends on the quality of the generated protein 3D structure, maximizing the quality of homology modeling is crucial. Homology modeling has many applications in the drug discovery process. Since drugs interact with receptors that consist mainly of proteins, protein 3D structure determination, and thus homology modeling is important in drug discovery. Accordingly, there has been the clarification of protein interactions using 3D structures of proteins that are built with homology modeling. This contributes to the identification of novel drug candidates. Homology modeling plays an important role in making drug discovery faster, easier, cheaper, and more practical. As new modeling methods and combinations are introduced, the scope of its applications widens.


Assuntos
Descoberta de Drogas , Modelos Moleculares , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...